Topics for Today

The future of the GA Roadmap ->iConspicuity in U-space ... and beyond →AVGAS update

EASA General Aviation

"Are we winning the battle against bureaucracy?"

GA is in our DNA

Many EASA colleagues started their aviation journey in GA

Those involved in the EASA GA Roadmap (and many other colleagues) are all involved in GA in one way or another. We live and breathe the challenges you face every day and are always looking on how we can make things better

John

Alain

Wendell

Vladimir

GA Roadmap 2.0 What we did already

GA goes digital

A continuing priority for General Aviation

Net Safety benefit

Embracing new business models

Adapt design and production rules

Share GA safety culture through promotion

GA Roadmap 2.0 Achievements Basic IR Part M Light **Balloon and Glider Rulebook**

Part 21 Light

ADS-L

AWO / EGNOS

GA Safety Promotion

Improving safety together with the skydiving community

European Union Aviation Safety Agency

Turning the Vision into Reality

Then looking to the future.....

GA Flightpath 2030+

We will enhance safety culture, enable sustainable growth and embrace a digital future so that we maximize the benefits of technology and encourage wider diversity and accessibility

AVIATORS

Safety Challenges

Strategy & Safety Management Directorate

Safety Intelligence & Performance Department

ANNUAL SAFETY RECOMMENDATIONS REVIEW

12

Opportunities / Threats

Workforce

- Ageing population
- Lack of attractiveness for younger generations
- Competition Urban Air Mobility vs Commercial Air Transport

FINANCIAL TIMES

US COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HTSI

Airlines + Add to myFT

'Eating your young': US airlines poach pilots from regional affiliates

High-flying wages for captains and first officers ripple through stretched aviation industry

Innovation

- Integrated avionics, Artificial Intelligence, Machine Learning and increased automation
- Electric and hybrid propulsion
- Other disruptive technologies

Sustainable future

- Social acceptance of general aviation
- Climate impacts
- Infrastructure adaptation

1

EUROPEAN PLAN FOR AVIATION SAFETY (EPAS) 2023-2025

European Union Avlation Safety Agency 25/11/2022

VOLUME I Strategic priorities

GA in EPAS Volume II

Chapter	Domain
1	Systemic safety and resilience
2	Competence of personnel
3	Flight operations — aeroplanes
4	Rotorcraft
5	General Aviation
6	Design and production
7	Maintenance and continuing airworthin
8	Air traffic management/air navigation se
9	Aerodromes and ground handling
10	Unmanned aircraft systems and manned
11	New technologies and concepts
12	Environmental protection

ness management

ervices

d VTOL-capable aircraft

GA in EPAS Volume II - Actions for 2023+

GA Flightpath 2030+

Building on what was done already in the GA Roadmap to get more people engaged in fun and safe GA flying while embracing technology

Sustainability

Digitalisation Diversity

iConspicuity in U-space ... and beyond

An Agency of the European Union

Essen eldorf Cologne els Bonn

Koblenz' nkfurt am Mai Würzb Luxembourg Mannheim

Metz .Karlsruhe

Stuttgar

Augsburg

aduz

CV

sanne

Safety data 2009 - 2019

*MANY ROTORCRAFT

Problems and Solution Areas

Drones operations

Congestion of uncontrolled traffic

Airspace inefficiencies

And constant interface with U-space developments

U-space

A set of *'new services'* and *'specific procedures'* designed to support safe, efficient and secure access to airspace for large numbers of drones without airspace *segregation* for the sole use of drones

iConspicuity

'in-flight capability' to transmit position <u>and/or</u> to receive, process and display information (other aircraft, airspace, weather, support to navigation ...) in a real time with the objective *to enhance pilots' situational awareness*

High Level Roadm

Propose a solution f U-space airspace

Step 1

MC/GM SERA.6005(c): Manned aircraft operating in airs, we designated by the competent authority as a U-spu pairspace, and not provided with an air traffic control service by the M, shall continuously make themselves electronically conspicuous to the U-space service providers

Step 2 Build on t

> Expand the functionalities and address the GA and Rotorcraft conspicuity issue generally, including the possibility to use the information broadcasted for Flight Information Service

i*Conspicuity* for Rotorcraft and General Aviation

Build on the U-space solution

Constraints & Boundaries

Development of AMC/GM to SERA.6005(c) by Q4 2021

Aircraft (manned)

- Affordability (to end users)
- Technology available now (aviation & other)
- Single device policy
- Simple installations
- Enable airborne collision risk mitigation for manned aircraft

USSP

- Minimum necessary position information (incl. from 3rd parties)
- Affordable infrastructure (ideally compatible with UAS needs)
- Minimum performance meeting U-space objectives

Suitable for urban and low level environments

Resources

- Existing international standards (aviation & other)
- Pan-European applicability
- ITU regulated spectrum
- Machine readable
- Open standards (non-proprietary or free of royalties)

AVIAMAPS

CJI

burnair Sky Net

Wing

G.

Mobile Telephony Feasibility Study

Introducing ADS-L

-> Minimum standard for making manned aircraft in U-space conspicuous to USSPs

\rightarrow Principle: "-L" is for "Light"

- Compatible with low-cost devices and mobile telephones
- → GNSS-based parameters
- Derived from ADS-B and simplified

→ Should support possible **future applications** (traffic awareness)

Means of Transmission

ADS-B Out (1090 MHz)

2023

For certified aircraft, using the **existing certified** technology already installed on board

Mobile telephony application transmitting in compliance with ADS-L specifications

- ADS-L (Mobile telephony)

Summary – Step 1

Certified ADS-B out

- ICAO standard
- Already used
- All elements in place

SRD860

- Utilises past investments
 - Affordable infrastructure

Mobile Telephony

ADS-L 4 Mobile*

*expected in 2023

High Level Roadmap

Step 1 **Propose a solution for U-space airspace**

PA.6005(c):

rs

Manned aircraft operating in airspace the competent authority as a **U-space airspace** provided with an air traffic control service by the AN shall continuously make themselves **electronic y** conspicuous to the U-space service provid

Step 2

Sonspicuity issue generally, including

Expand the fur sonalities and address the GA and the possibility to use the information broadcasted for Flight Information Service

iConspicuity for Rotorcraft and General Aviation

Build on the U-s ace solution

EASA Research – *iConspicuity interoperability*

Objectives

- **Review** the existing deployments, solutions, standards \rightarrow
- **Identify and analyze** the set of requirements enabling interoperability \rightarrow (incl. ATM and U-space)
- **Develop** a series of case studies, **identify** the suitable deployment scenarios \rightarrow and the coordination actions
- \rightarrow Assess the additional benefits for airspace users

Comprehensive roadmap for the development of technical standards addressing the interoperability

EASA Research – i*Conspicuity* interoperability Timeline

Survey on the use of electronic collision warning and conspicuity systems <

Take part!

AVGAS Update

An Agency of the European Union

What is the Problem ?

European and US initiatives are in progress to remove toxic fuel additives from the Aircraft fuel market and foster the use of Unleaded fuels.

These initiatives will impact certain Aircraft operability due to potential limited availability of 100LL in Europe for the Aircraft requiring High octane fuel.

How does it impact **EU fleet?**

What are the possible solutions?

How can EASA help?

Tetraethyllead (TEL) additive used in Avgas100LL identified as a Substance of Very **High Concern** \rightarrow After 1 May 2025, use of pure TEL in EU without authorization will be prohibited

Current Situation

- **FAA leading authority** (no AVGAS engines) certified by EASA) -> EASA closely monitoring
- \rightarrow TEL exemptions possible after 1 May 2025
- →GAMI STCs to be validated by EASA (after application by GAMI)
- ->Alternative fuels (UL91) available for some engines

Other Considerations

→Engine/aircraft conversions A high-octane <u>unleaded</u> avgas could add 20.000 € or more during engine TBO (~2000h)

STAN Could be reviewed to offer more fuel alternatives (only if technically possible)

Slido.com

